Viga vão-balanço com carga uniforme distribuída em parte do vão
Informações sobre a figura e as equações:
Legenda:
\(\delta_A = \dfrac{b w x \left(- 2 a^{2} b - 4 a^{2} c - 4 a b^{2} - 12 a b c - 8 a c^{2} - b^{3} - 4 b^{2} c - 4 b c^{2} + 2 b x^{2} + 4 c x^{2}\right)}{24 E I \left(a + b + c\right)}\)
\(\delta_B = \dfrac{w \left(- a^{5} - a^{4} b - a^{4} c + 4 a^{4} x + 4 a^{3} b x + 4 a^{3} c x - 6 a^{3} x^{2} - 2 a^{2} b^{2} x - 4 a^{2} b c x - 6 a^{2} b x^{2} - 6 a^{2} c x^{2} + 4 a^{2} x^{3} - 4 a b^{3} x - 12 a b^{2} c x - 8 a b c^{2} x + 4 a b x^{3} + 4 a c x^{3} - a x^{4} - b^{4} x - 4 b^{3} c x - 4 b^{2} c^{2} x + 2 b^{2} x^{3} + 4 b c x^{3} - b x^{4} - c x^{4}\right)}{24 E I \left(a + b + c\right)}\)
\(\delta_C = \dfrac{b w \left(4 a^{4} + 10 a^{3} b + 4 a^{3} c - 12 a^{3} x + 10 a^{2} b^{2} + 6 a^{2} b c - 26 a^{2} b x - 16 a^{2} c x + 12 a^{2} x^{2} + 5 a b^{3} + 4 a b^{2} c - 20 a b^{2} x - 24 a b c x + 18 a b x^{2} - 8 a c^{2} x + 12 a c x^{2} - 4 a x^{3} + b^{4} + b^{3} c - 5 b^{3} x - 8 b^{2} c x + 6 b^{2} x^{2} - 4 b c^{2} x + 6 b c x^{2} - 2 b x^{3}\right)}{24 E I \left(a + b + c\right)}\)
\(\delta_D = \dfrac{b w \left(- 4 a^{3} b - 8 a^{3} c - 8 a^{2} b^{2} - 24 a^{2} b c + 4 a^{2} b x - 12 a^{2} c^{2} + 8 a^{2} c x - 5 a b^{3} - 20 a b^{2} c + 4 a b^{2} x - 18 a b c^{2} + 12 a b c x - 4 a c^{3} + 4 a c^{2} x - b^{4} - 5 b^{3} c + b^{3} x - 6 b^{2} c^{2} + 4 b^{2} c x - 2 b c^{3} + 2 b c^{2} x\right)}{24 E I \left(a + b + c\right)}\)
\(M_A = \dfrac{b w x \left(b + 2 c\right)}{2 \left(a + b + c\right)}\)
\(M_B = \dfrac{w \left(- a^{3} - a^{2} b - a^{2} c + 2 a^{2} x + 2 a b x + 2 a c x - a x^{2} + b^{2} x + 2 b c x - b x^{2} - c x^{2}\right)}{2 \left(a + b + c\right)}\)
\(M_C = \dfrac{b w \left(2 a^{2} + 3 a b + 2 a c - 2 a x + b^{2} + b c - b x\right)}{2 \left(a + b + c\right)}\)
\(M_D = 0\)
\(V_A = \dfrac{b w \left(b + 2 c\right)}{2 \left(a + b + c\right)}\)
\(V_B = \dfrac{w \left(2 a^{2} + 2 a b + 2 a c - 2 a x + b^{2} + 2 b c - 2 b x - 2 c x\right)}{2 \left(a + b + c\right)}\)
\(V_C = - \dfrac{b w \left(2 a + b\right)}{2 a + 2 b + 2 c}\)
\(V_D = 0\)
\(R_1 = \dfrac{b w \left(b + 2 c\right)}{2 \left(a + b + c\right)}\)
\(R_2 = \dfrac{b w \left(2 a + b\right)}{2 \left(a + b + c\right)}\)
deltaA = b*w*x*(-2*a**2*b - 4*a**2*c - 4*a*b**2 - 12*a*b*c - 8*a*c**2 - b**3 - 4*b**2*c - 4*b*c**2 + 2*b*x**2 + 4*c*x**2)/(24*E*I*(a + b + c))
deltaB = w*(-a**5 - a**4*b - a**4*c + 4*a**4*x + 4*a**3*b*x + 4*a**3*c*x - 6*a**3*x**2 - 2*a**2*b**2*x - 4*a**2*b*c*x - 6*a**2*b*x**2 - 6*a**2*c*x**2 + 4*a**2*x**3 - 4*a*b**3*x - 12*a*b**2*c*x - 8*a*b*c**2*x + 4*a*b*x**3 + 4*a*c*x**3 - a*x**4 - b**4*x - 4*b**3*c*x - 4*b**2*c**2*x + 2*b**2*x**3 + 4*b*c*x**3 - b*x**4 - c*x**4)/(24*E*I*(a + b + c))
deltaC = b*w*(4*a**4 + 10*a**3*b + 4*a**3*c - 12*a**3*x + 10*a**2*b**2 + 6*a**2*b*c - 26*a**2*b*x - 16*a**2*c*x + 12*a**2*x**2 + 5*a*b**3 + 4*a*b**2*c - 20*a*b**2*x - 24*a*b*c*x + 18*a*b*x**2 - 8*a*c**2*x + 12*a*c*x**2 - 4*a*x**3 + b**4 + b**3*c - 5*b**3*x - 8*b**2*c*x + 6*b**2*x**2 - 4*b*c**2*x + 6*b*c*x**2 - 2*b*x**3)/(24*E*I*(a + b + c))
deltaD = b*w*(-4*a**3*b - 8*a**3*c - 8*a**2*b**2 - 24*a**2*b*c + 4*a**2*b*x - 12*a**2*c**2 + 8*a**2*c*x - 5*a*b**3 - 20*a*b**2*c + 4*a*b**2*x - 18*a*b*c**2 + 12*a*b*c*x - 4*a*c**3 + 4*a*c**2*x - b**4 - 5*b**3*c + b**3*x - 6*b**2*c**2 + 4*b**2*c*x - 2*b*c**3 + 2*b*c**2*x)/(24*E*I*(a + b + c))
MA = b*w*x*(b + 2*c)/(2*(a + b + c))
MB = w*(-a**3 - a**2*b - a**2*c + 2*a**2*x + 2*a*b*x + 2*a*c*x - a*x**2 + b**2*x + 2*b*c*x - b*x**2 - c*x**2)/(2*(a + b + c))
MC = b*w*(2*a**2 + 3*a*b + 2*a*c - 2*a*x + b**2 + b*c - b*x)/(2*(a + b + c))
MD = 0
VA = b*w*(b + 2*c)/(2*(a + b + c))
VB = w*(2*a**2 + 2*a*b + 2*a*c - 2*a*x + b**2 + 2*b*c - 2*b*x - 2*c*x)/(2*(a + b + c))
VC = -b*w*(2*a + b)/(2*a + 2*b + 2*c)
VD = 0
R1 = b*w*(b + 2*c)/(2*(a + b + c))
R2 = b*w*(2*a + b)/(2*(a + b + c))