InícioDV8-meestruturas.ufprVer outras vigas ☰

DV8-me

Viga duplo-vão com momento concentrado no vão da esquerda

M Momento concentrado Apoio rotulado R1 Apoio simples R2 Apoio simples R3 A viga A viga A viga a Cota b Cota L Cota A x Identificador B Identificador C Identificador flechas Flechas da viga momento fletor Momento fletor da viga esforço cortante Esforço cortante da viga

Informações sobre a figura e as equações:

  • As equações são definidas por tramos (tramo A, B...) e válidas somente no tramo indicado no índice (por exemplo, \(M_A\) é a equação do momento fletor somente para o tramo A);
  • Os valores de \(x\) começam em zero no início da viga à esquerda e vão até o valor do comprimento total da viga, no final da viga à direita, portanto, para usar uma equação de um segundo tramo, pode exemplo tramo B, deve-se calcular os valores de \(x\) para esse tramo (por exemplo, se o tramo anterior ao B é o primeiro tramo da viga e tem comprimento de 2,5 metros, o valor de x inicial do tramo B para ser utilizado nas equações é 2,5 metros. No primeiro tramo, \(x\) começa em zero);
  • Os gráficos de flechas, momentos e cortes estão com valores de escala constante e apenas representam o traçado do diagrama;
  • As reações de apoio indicadas na figura estão sempre no sentido positivo da reação. Caso alguma reação tenha o sentido negativo será definido pelo sinal da equação;

Legenda:

  • \(E\) - módulo de elasticidade do material da viga;
  • \(I\) - inércia da seção transversal da viga (em torno no eixo que sai da tela);
  • \(L\) - comprimento total da viga;
  • \(M\) - momento concentrado;
  • \(a\) - comprimento do tramo A;
  • \(b\) - comprimento do tramo B;
  • \(x\) - posição em uma parte qualquer de um tramo da viga;

Equações

Flechas

\(\delta_A = \dfrac{M x \left(- 3 L^{4} + 12 L^{3} a + 8 L^{3} b - 9 L^{2} a^{2} - 24 L^{2} a b - 6 L^{2} b^{2} - 3 L^{2} x^{2} + 12 L a^{2} b + 12 L a b^{2} + 4 L b x^{2} - 3 a^{2} b^{2} + 3 a^{2} x^{2} + b^{4} - b^{2} x^{2}\right)}{12 E I L \left(L^{2} - 2 L b + b^{2}\right)}\)

\(\delta_B = \dfrac{M \left(- 3 L^{4} x + 6 L^{3} a^{2} + 8 L^{3} b x + 6 L^{3} x^{2} - 12 L^{2} a^{2} b - 9 L^{2} a^{2} x - 6 L^{2} b^{2} x - 12 L^{2} b x^{2} - 3 L^{2} x^{3} + 6 L a^{2} b^{2} + 12 L a^{2} b x + 6 L b^{2} x^{2} + 4 L b x^{3} - 3 a^{2} b^{2} x + 3 a^{2} x^{3} + b^{4} x - b^{2} x^{3}\right)}{12 E I L \left(L^{2} - 2 L b + b^{2}\right)}\)

\(\delta_C = \dfrac{M \left(- L^{5} + 2 L^{4} b + 3 L^{4} x + 3 L^{3} a^{2} - 6 L^{3} b x - 3 L^{3} x^{2} - 9 L^{2} a^{2} x - 2 L^{2} b^{3} + 2 L^{2} b^{2} x + 6 L^{2} b x^{2} + L^{2} x^{3} - 3 L a^{2} b^{2} + 9 L a^{2} x^{2} + L b^{4} + 2 L b^{3} x - 3 L b^{2} x^{2} - 2 L b x^{3} + 3 a^{2} b^{2} x - 3 a^{2} x^{3} - b^{4} x + b^{2} x^{3}\right)}{12 E I L b \left(L - b\right)}\)

Momentos fletores

\(M_A = \dfrac{M x \left(- 3 L^{2} + 4 L b + 3 a^{2} - b^{2}\right)}{2 L \left(L^{2} - 2 L b + b^{2}\right)}\)

\(M_B = \dfrac{M \left(2 L^{3} - 4 L^{2} b - 3 L^{2} x + 2 L b^{2} + 4 L b x + 3 a^{2} x - b^{2} x\right)}{2 L \left(L^{2} - 2 L b + b^{2}\right)}\)

\(M_C = \dfrac{M \left(- L^{3} + 2 L^{2} b + L^{2} x + 3 L a^{2} - L b^{2} - 2 L b x - 3 a^{2} x + b^{2} x\right)}{2 L b \left(L - b\right)}\)

Esforços cortantes

\(V_A = \dfrac{M \left(- 3 L^{2} + 4 L b + 3 a^{2} - b^{2}\right)}{2 L \left(L^{2} - 2 L b + b^{2}\right)}\)

\(V_B = \dfrac{M \left(- 3 L^{2} + 4 L b + 3 a^{2} - b^{2}\right)}{2 L \left(L^{2} - 2 L b + b^{2}\right)}\)

\(V_C = \dfrac{M \left(L^{2} - 2 L b - 3 a^{2} + b^{2}\right)}{2 L b \left(L - b\right)}\)

Reações de apoio

\(R_1 = \dfrac{M \left(- 3 L^{2} + 4 L b + 3 a^{2} - b^{2}\right)}{2 L \left(L^{2} - 2 L b + b^{2}\right)}\)

\(R_2 = \dfrac{M \left(L^{2} - 3 a^{2} - b^{2}\right)}{2 b \left(L^{2} - 2 L b + b^{2}\right)}\)

\(R_3 = \dfrac{M \left(L^{2} - 2 L b - 3 a^{2} + b^{2}\right)}{2 L b \left(- L + b\right)}\)

Equações em python

Flechas

deltaA = M*x*(-3*L**4 + 12*L**3*a + 8*L**3*b - 9*L**2*a**2 - 24*L**2*a*b - 6*L**2*b**2 - 3*L**2*x**2 + 12*L*a**2*b + 12*L*a*b**2 + 4*L*b*x**2 - 3*a**2*b**2 + 3*a**2*x**2 + b**4 - b**2*x**2)/(12*E*I*L*(L**2 - 2*L*b + b**2))
deltaB = M*(-3*L**4*x + 6*L**3*a**2 + 8*L**3*b*x + 6*L**3*x**2 - 12*L**2*a**2*b - 9*L**2*a**2*x - 6*L**2*b**2*x - 12*L**2*b*x**2 - 3*L**2*x**3 + 6*L*a**2*b**2 + 12*L*a**2*b*x + 6*L*b**2*x**2 + 4*L*b*x**3 - 3*a**2*b**2*x + 3*a**2*x**3 + b**4*x - b**2*x**3)/(12*E*I*L*(L**2 - 2*L*b + b**2))
deltaC = M*(-L**5 + 2*L**4*b + 3*L**4*x + 3*L**3*a**2 - 6*L**3*b*x - 3*L**3*x**2 - 9*L**2*a**2*x - 2*L**2*b**3 + 2*L**2*b**2*x + 6*L**2*b*x**2 + L**2*x**3 - 3*L*a**2*b**2 + 9*L*a**2*x**2 + L*b**4 + 2*L*b**3*x - 3*L*b**2*x**2 - 2*L*b*x**3 + 3*a**2*b**2*x - 3*a**2*x**3 - b**4*x + b**2*x**3)/(12*E*I*L*b*(L - b))

Momentos fletores

MA = M*x*(-3*L**2 + 4*L*b + 3*a**2 - b**2)/(2*L*(L**2 - 2*L*b + b**2))
MB = M*(2*L**3 - 4*L**2*b - 3*L**2*x + 2*L*b**2 + 4*L*b*x + 3*a**2*x - b**2*x)/(2*L*(L**2 - 2*L*b + b**2))
MC = M*(-L**3 + 2*L**2*b + L**2*x + 3*L*a**2 - L*b**2 - 2*L*b*x - 3*a**2*x + b**2*x)/(2*L*b*(L - b))

Esforços cortantes

VA = M*(-3*L**2 + 4*L*b + 3*a**2 - b**2)/(2*L*(L**2 - 2*L*b + b**2))
VB = M*(-3*L**2 + 4*L*b + 3*a**2 - b**2)/(2*L*(L**2 - 2*L*b + b**2))
VC = M*(L**2 - 2*L*b - 3*a**2 + b**2)/(2*L*b*(L - b))

Reações de apoio

R1 = M*(-3*L**2 + 4*L*b + 3*a**2 - b**2)/(2*L*(L**2 - 2*L*b + b**2))
R2 = M*(L**2 - 3*a**2 - b**2)/(2*b*(L**2 - 2*L*b + b**2))
R3 = M*(L**2 - 2*L*b - 3*a**2 + b**2)/(2*L*b*(-L + b))