Viga duplo-vão com carga concentrada no vão da esquerda
Informações sobre a figura e as equações:
Legenda:
\(\delta_A = \dfrac{F x \left(- 3 L^{4} a + 6 L^{3} a^{2} + 8 L^{3} a b + 2 L^{3} x^{2} - 3 L^{2} a^{3} - 12 L^{2} a^{2} b - 6 L^{2} a b^{2} - 3 L^{2} a x^{2} - 4 L^{2} b x^{2} + 4 L a^{3} b + 6 L a^{2} b^{2} + 4 L a b x^{2} + 2 L b^{2} x^{2} - a^{3} b^{2} + a^{3} x^{2} + a b^{4} - a b^{2} x^{2}\right)}{12 E I L \left(L^{2} - 2 L b + b^{2}\right)}\)
\(\delta_B = \dfrac{F a \left(- 3 L^{4} x + 2 L^{3} a^{2} + 8 L^{3} b x + 6 L^{3} x^{2} - 4 L^{2} a^{2} b - 3 L^{2} a^{2} x - 6 L^{2} b^{2} x - 12 L^{2} b x^{2} - 3 L^{2} x^{3} + 2 L a^{2} b^{2} + 4 L a^{2} b x + 6 L b^{2} x^{2} + 4 L b x^{3} - a^{2} b^{2} x + a^{2} x^{3} + b^{4} x - b^{2} x^{3}\right)}{12 E I L \left(L^{2} - 2 L b + b^{2}\right)}\)
\(\delta_C = \dfrac{F a \left(- L^{5} + 2 L^{4} b + 3 L^{4} x + L^{3} a^{2} - 6 L^{3} b x - 3 L^{3} x^{2} - 3 L^{2} a^{2} x - 2 L^{2} b^{3} + 2 L^{2} b^{2} x + 6 L^{2} b x^{2} + L^{2} x^{3} - L a^{2} b^{2} + 3 L a^{2} x^{2} + L b^{4} + 2 L b^{3} x - 3 L b^{2} x^{2} - 2 L b x^{3} + a^{2} b^{2} x - a^{2} x^{3} - b^{4} x + b^{2} x^{3}\right)}{12 E I L b \left(L - b\right)}\)
\(M_A = \dfrac{F x \left(2 L^{3} - 3 L^{2} a - 4 L^{2} b + 4 L a b + 2 L b^{2} + a^{3} - a b^{2}\right)}{2 L \left(L^{2} - 2 L b + b^{2}\right)}\)
\(M_B = \dfrac{F a \left(2 L^{3} - 4 L^{2} b - 3 L^{2} x + 2 L b^{2} + 4 L b x + a^{2} x - b^{2} x\right)}{2 L \left(L^{2} - 2 L b + b^{2}\right)}\)
\(M_C = \dfrac{F a \left(- L^{3} + 2 L^{2} b + L^{2} x + L a^{2} - L b^{2} - 2 L b x - a^{2} x + b^{2} x\right)}{2 L b \left(L - b\right)}\)
\(V_A = \dfrac{F \left(2 L^{3} - 3 L^{2} a - 4 L^{2} b + 4 L a b + 2 L b^{2} + a^{3} - a b^{2}\right)}{2 L \left(L^{2} - 2 L b + b^{2}\right)}\)
\(V_B = \dfrac{F a \left(- 3 L^{2} + 4 L b + a^{2} - b^{2}\right)}{2 L \left(L^{2} - 2 L b + b^{2}\right)}\)
\(V_C = \dfrac{F a \left(L^{2} - 2 L b - a^{2} + b^{2}\right)}{2 L b \left(L - b\right)}\)
\(R_1 = \dfrac{F \left(2 L^{3} - 3 L^{2} a - 4 L^{2} b + 4 L a b + 2 L b^{2} + a^{3} - a b^{2}\right)}{2 L \left(L^{2} - 2 L b + b^{2}\right)}\)
\(R_2 = \dfrac{F a \left(L^{2} - a^{2} - b^{2}\right)}{2 b \left(L^{2} - 2 L b + b^{2}\right)}\)
\(R_3 = \dfrac{F a \left(L^{2} - 2 L b - a^{2} + b^{2}\right)}{2 L b \left(- L + b\right)}\)
deltaA = F*x*(-3*L**4*a + 6*L**3*a**2 + 8*L**3*a*b + 2*L**3*x**2 - 3*L**2*a**3 - 12*L**2*a**2*b - 6*L**2*a*b**2 - 3*L**2*a*x**2 - 4*L**2*b*x**2 + 4*L*a**3*b + 6*L*a**2*b**2 + 4*L*a*b*x**2 + 2*L*b**2*x**2 - a**3*b**2 + a**3*x**2 + a*b**4 - a*b**2*x**2)/(12*E*I*L*(L**2 - 2*L*b + b**2))
deltaB = F*a*(-3*L**4*x + 2*L**3*a**2 + 8*L**3*b*x + 6*L**3*x**2 - 4*L**2*a**2*b - 3*L**2*a**2*x - 6*L**2*b**2*x - 12*L**2*b*x**2 - 3*L**2*x**3 + 2*L*a**2*b**2 + 4*L*a**2*b*x + 6*L*b**2*x**2 + 4*L*b*x**3 - a**2*b**2*x + a**2*x**3 + b**4*x - b**2*x**3)/(12*E*I*L*(L**2 - 2*L*b + b**2))
deltaC = F*a*(-L**5 + 2*L**4*b + 3*L**4*x + L**3*a**2 - 6*L**3*b*x - 3*L**3*x**2 - 3*L**2*a**2*x - 2*L**2*b**3 + 2*L**2*b**2*x + 6*L**2*b*x**2 + L**2*x**3 - L*a**2*b**2 + 3*L*a**2*x**2 + L*b**4 + 2*L*b**3*x - 3*L*b**2*x**2 - 2*L*b*x**3 + a**2*b**2*x - a**2*x**3 - b**4*x + b**2*x**3)/(12*E*I*L*b*(L - b))
MA = F*x*(2*L**3 - 3*L**2*a - 4*L**2*b + 4*L*a*b + 2*L*b**2 + a**3 - a*b**2)/(2*L*(L**2 - 2*L*b + b**2))
MB = F*a*(2*L**3 - 4*L**2*b - 3*L**2*x + 2*L*b**2 + 4*L*b*x + a**2*x - b**2*x)/(2*L*(L**2 - 2*L*b + b**2))
MC = F*a*(-L**3 + 2*L**2*b + L**2*x + L*a**2 - L*b**2 - 2*L*b*x - a**2*x + b**2*x)/(2*L*b*(L - b))
VA = F*(2*L**3 - 3*L**2*a - 4*L**2*b + 4*L*a*b + 2*L*b**2 + a**3 - a*b**2)/(2*L*(L**2 - 2*L*b + b**2))
VB = F*a*(-3*L**2 + 4*L*b + a**2 - b**2)/(2*L*(L**2 - 2*L*b + b**2))
VC = F*a*(L**2 - 2*L*b - a**2 + b**2)/(2*L*b*(L - b))
R1 = F*(2*L**3 - 3*L**2*a - 4*L**2*b + 4*L*a*b + 2*L*b**2 + a**3 - a*b**2)/(2*L*(L**2 - 2*L*b + b**2))
R2 = F*a*(L**2 - a**2 - b**2)/(2*b*(L**2 - 2*L*b + b**2))
R3 = F*a*(L**2 - 2*L*b - a**2 + b**2)/(2*L*b*(-L + b))