Viga em balanço com carga uniforme distribuída nos extremos do vão
Informações sobre a figura e as equações:
Legenda:
\(\delta_A = \dfrac{w x^{2} \left(- 12 L b - 6 a^{2} + 4 a x + 6 b^{2} + 4 b x - x^{2}\right)}{24 E I}\)
\(\delta_B = \dfrac{w \left(- 12 L b x^{2} + a^{4} - 4 a^{3} x + 6 b^{2} x^{2} + 4 b x^{3}\right)}{24 E I}\)
\(\delta_C = \dfrac{w \left(- L^{4} + 4 L^{3} b + 4 L^{3} x - 6 L^{2} b^{2} - 12 L^{2} b x - 6 L^{2} x^{2} + 4 L b^{3} + 12 L b^{2} x + 4 L x^{3} + a^{4} - 4 a^{3} x - b^{4} - 4 b^{3} x - x^{4}\right)}{24 E I}\)
\(M_A = \dfrac{w \left(- 2 L b - a^{2} + 2 a x + b^{2} + 2 b x - x^{2}\right)}{2}\)
\(M_B = \dfrac{b w \left(- 2 L + b + 2 x\right)}{2}\)
\(M_C = \dfrac{w \left(- L^{2} + 2 L x - x^{2}\right)}{2}\)
\(V_A = w \left(a + b - x\right)\)
\(V_B = b w\)
\(V_C = w \left(L - x\right)\)
\(R_1 = w \left(a + b\right)\)
\(M_1 = \dfrac{w \left(2 L b + a^{2} - b^{2}\right)}{2}\)
deltaA = w*x**2*(-12*L*b - 6*a**2 + 4*a*x + 6*b**2 + 4*b*x - x**2)/(24*E*I)
deltaB = w*(-12*L*b*x**2 + a**4 - 4*a**3*x + 6*b**2*x**2 + 4*b*x**3)/(24*E*I)
deltaC = w*(-L**4 + 4*L**3*b + 4*L**3*x - 6*L**2*b**2 - 12*L**2*b*x - 6*L**2*x**2 + 4*L*b**3 + 12*L*b**2*x + 4*L*x**3 + a**4 - 4*a**3*x - b**4 - 4*b**3*x - x**4)/(24*E*I)
MA = w*(-2*L*b - a**2 + 2*a*x + b**2 + 2*b*x - x**2)/2
MB = b*w*(-2*L + b + 2*x)/2
MC = w*(-L**2 + 2*L*x - x**2)/2
VA = w*(a + b - x)
VB = b*w
VC = w*(L - x)
R1 = w*(a + b)
M1 = w*(2*L*b + a**2 - b**2)/2