Viga biengastada com carga uniforme distribuída nos extremos do vão
Informações sobre a figura e as equações:
Legenda:
\(\delta_A = \dfrac{w x^{2} \left(- 6 L^{3} a^{2} + 4 L^{3} a x - L^{3} x^{2} + 8 L^{2} a^{3} - 4 L^{2} b^{3} - 3 L a^{4} - 4 L a^{3} x + 3 L b^{4} + 4 L b^{3} x + 2 a^{4} x - 2 b^{4} x\right)}{24 E I L^{3}}\)
\(\delta_B = \dfrac{w \left(L^{3} a^{3} \left(a - 4 x\right) + 4 L^{2} x^{2} \left(2 a^{3} - b^{3}\right) + L x^{2} \left(- 3 a^{4} - 4 a^{3} x + 3 b^{4} + 4 b^{3} x\right) + 2 x^{3} \left(a^{4} - b^{4}\right)\right)}{24 E I L^{3}}\)
\(\delta_C = \dfrac{w \left(L^{3} \left(- L^{4} + 4 L^{3} b + 4 L^{3} x - 6 L^{2} b^{2} - 12 L^{2} b x - 6 L^{2} x^{2} + 4 L b^{3} + 12 L b^{2} x + 12 L b x^{2} + 4 L x^{3} + a^{4} - 4 a^{3} x - b^{4} - 4 b^{3} x - 6 b^{2} x^{2} - 4 b x^{3} - x^{4}\right) + 4 L^{2} x^{2} \left(2 a^{3} - b^{3}\right) + L x^{2} \left(- 3 a^{4} - 4 a^{3} x + 3 b^{4} + 4 b^{3} x\right) + 2 x^{3} \left(a^{4} - b^{4}\right)\right)}{24 E I L^{3}}\)
\(M_A = \dfrac{w \left(- 6 L^{3} a^{2} + 12 L^{3} a x - 6 L^{3} x^{2} + 8 L^{2} a^{3} - 4 L^{2} b^{3} - 3 L a^{4} - 12 L a^{3} x + 3 L b^{4} + 12 L b^{3} x + 6 a^{4} x - 6 b^{4} x\right)}{12 L^{3}}\)
\(M_B = \dfrac{w \left(4 L^{2} \left(2 a^{3} - b^{3}\right) + 3 L \left(- a^{4} - 4 a^{3} x + b^{4} + 4 b^{3} x\right) + 6 x \left(a^{4} - b^{4}\right)\right)}{12 L^{3}}\)
\(M_C = \dfrac{w \left(6 L^{3} \left(- L^{2} + 2 L b + 2 L x - b^{2} - 2 b x - x^{2}\right) + 4 L^{2} \left(2 a^{3} - b^{3}\right) + 3 L \left(- a^{4} - 4 a^{3} x + b^{4} + 4 b^{3} x\right) + 6 x \left(a^{4} - b^{4}\right)\right)}{12 L^{3}}\)
\(V_A = \dfrac{w \left(2 L^{3} a - 2 L^{3} x - 2 L a^{3} + 2 L b^{3} + a^{4} - b^{4}\right)}{2 L^{3}}\)
\(V_B = \dfrac{w \left(2 L \left(- a^{3} + b^{3}\right) + a^{4} - b^{4}\right)}{2 L^{3}}\)
\(V_C = \dfrac{w \left(2 L^{3} \left(L - b - x\right) + 2 L \left(- a^{3} + b^{3}\right) + a^{4} - b^{4}\right)}{2 L^{3}}\)
\(R_1 = \dfrac{w \left(2 L^{3} a - 2 L a^{3} + 2 L b^{3} + a^{4} - b^{4}\right)}{2 L^{3}}\)
\(M_1 = \dfrac{w \left(6 L^{2} a^{2} - 8 L a^{3} + 4 L b^{3} + 3 a^{4} - 3 b^{4}\right)}{12 L^{2}}\)
\(R_2 = \dfrac{w \left(2 L^{3} b + 2 L a^{3} - 2 L b^{3} - a^{4} + b^{4}\right)}{2 L^{3}}\)
\(M_2 = \dfrac{w \left(- 6 L^{2} b^{2} - 4 L a^{3} + 8 L b^{3} + 3 a^{4} - 3 b^{4}\right)}{12 L^{2}}\)
deltaA = w*x**2*(-6*L**3*a**2 + 4*L**3*a*x - L**3*x**2 + 8*L**2*a**3 - 4*L**2*b**3 - 3*L*a**4 - 4*L*a**3*x + 3*L*b**4 + 4*L*b**3*x + 2*a**4*x - 2*b**4*x)/(24*E*I*L**3)
deltaB = w*(L**3*a**3*(a - 4*x) + 4*L**2*x**2*(2*a**3 - b**3) + L*x**2*(-3*a**4 - 4*a**3*x + 3*b**4 + 4*b**3*x) + 2*x**3*(a**4 - b**4))/(24*E*I*L**3)
deltaC = w*(L**3*(-L**4 + 4*L**3*b + 4*L**3*x - 6*L**2*b**2 - 12*L**2*b*x - 6*L**2*x**2 + 4*L*b**3 + 12*L*b**2*x + 12*L*b*x**2 + 4*L*x**3 + a**4 - 4*a**3*x - b**4 - 4*b**3*x - 6*b**2*x**2 - 4*b*x**3 - x**4) + 4*L**2*x**2*(2*a**3 - b**3) + L*x**2*(-3*a**4 - 4*a**3*x + 3*b**4 + 4*b**3*x) + 2*x**3*(a**4 - b**4))/(24*E*I*L**3)
MA = w*(-6*L**3*a**2 + 12*L**3*a*x - 6*L**3*x**2 + 8*L**2*a**3 - 4*L**2*b**3 - 3*L*a**4 - 12*L*a**3*x + 3*L*b**4 + 12*L*b**3*x + 6*a**4*x - 6*b**4*x)/(12*L**3)
MB = w*(4*L**2*(2*a**3 - b**3) + 3*L*(-a**4 - 4*a**3*x + b**4 + 4*b**3*x) + 6*x*(a**4 - b**4))/(12*L**3)
MC = w*(6*L**3*(-L**2 + 2*L*b + 2*L*x - b**2 - 2*b*x - x**2) + 4*L**2*(2*a**3 - b**3) + 3*L*(-a**4 - 4*a**3*x + b**4 + 4*b**3*x) + 6*x*(a**4 - b**4))/(12*L**3)
VA = w*(2*L**3*a - 2*L**3*x - 2*L*a**3 + 2*L*b**3 + a**4 - b**4)/(2*L**3)
VB = w*(2*L*(-a**3 + b**3) + a**4 - b**4)/(2*L**3)
VC = w*(2*L**3*(L - b - x) + 2*L*(-a**3 + b**3) + a**4 - b**4)/(2*L**3)
R1 = w*(2*L**3*a - 2*L*a**3 + 2*L*b**3 + a**4 - b**4)/(2*L**3)
M1 = w*(6*L**2*a**2 - 8*L*a**3 + 4*L*b**3 + 3*a**4 - 3*b**4)/(12*L**2)
R2 = w*(2*L**3*b + 2*L*a**3 - 2*L*b**3 - a**4 + b**4)/(2*L**3)
M2 = w*(-6*L**2*b**2 - 4*L*a**3 + 8*L*b**3 + 3*a**4 - 3*b**4)/(12*L**2)