Viga biengastada com carga uniforme distribuída em parte do vão
Informações sobre a figura e as equações:
Legenda:
\(\delta_A = \dfrac{b w x^{2} \left(- 12 L^{3} a - 6 L^{3} b + 4 L^{3} x + 24 L^{2} a^{2} + 24 L^{2} a b + 8 L^{2} b^{2} - 12 L a^{3} - 18 L a^{2} b - 12 L a^{2} x - 12 L a b^{2} - 12 L a b x - 3 L b^{3} - 4 L b^{2} x + 8 a^{3} x + 12 a^{2} b x + 8 a b^{2} x + 2 b^{3} x\right)}{24 E I L^{3}}\)
\(\delta_B = \dfrac{w \left(L^{3} \left(- a^{4} + 4 a^{3} x - 6 a^{2} x^{2} - 12 a b x^{2} + 4 a x^{3} - 6 b^{2} x^{2} + 4 b x^{3} - x^{4}\right) + 8 L^{2} b x^{2} \left(3 a^{2} + 3 a b + b^{2}\right) - L b x^{2} \left(12 a^{3} + 18 a^{2} b + 12 a^{2} x + 12 a b^{2} + 12 a b x + 3 b^{3} + 4 b^{2} x\right) + 2 b x^{3} \left(4 a^{3} + 6 a^{2} b + 4 a b^{2} + b^{3}\right)\right)}{24 E I L^{3}}\)
\(\delta_C = \dfrac{b w \left(L^{3} \left(4 a^{3} + 6 a^{2} b - 12 a^{2} x + 4 a b^{2} - 12 a b x + b^{3} - 4 b^{2} x\right) + 8 L^{2} x^{2} \left(3 a^{2} + 3 a b + b^{2}\right) - L x^{2} \left(12 a^{3} + 18 a^{2} b + 12 a^{2} x + 12 a b^{2} + 12 a b x + 3 b^{3} + 4 b^{2} x\right) + 2 x^{3} \left(4 a^{3} + 6 a^{2} b + 4 a b^{2} + b^{3}\right)\right)}{24 E I L^{3}}\)
\(M_A = \dfrac{b w \left(- 12 L^{3} a - 6 L^{3} b + 12 L^{3} x + 24 L^{2} a^{2} + 24 L^{2} a b + 8 L^{2} b^{2} - 12 L a^{3} - 18 L a^{2} b - 36 L a^{2} x - 12 L a b^{2} - 36 L a b x - 3 L b^{3} - 12 L b^{2} x + 24 a^{3} x + 36 a^{2} b x + 24 a b^{2} x + 6 b^{3} x\right)}{12 L^{3}}\)
\(M_B = \dfrac{w \left(6 L^{3} \left(- a^{2} - 2 a b + 2 a x - b^{2} + 2 b x - x^{2}\right) + 8 L^{2} b \left(3 a^{2} + 3 a b + b^{2}\right) - 3 L b \left(4 a^{3} + 6 a^{2} b + 12 a^{2} x + 4 a b^{2} + 12 a b x + b^{3} + 4 b^{2} x\right) + 6 b x \left(4 a^{3} + 6 a^{2} b + 4 a b^{2} + b^{3}\right)\right)}{12 L^{3}}\)
\(M_C = \dfrac{b w \left(8 L^{2} \left(3 a^{2} + 3 a b + b^{2}\right) - 3 L \left(4 a^{3} + 6 a^{2} b + 12 a^{2} x + 4 a b^{2} + 12 a b x + b^{3} + 4 b^{2} x\right) + 6 x \left(4 a^{3} + 6 a^{2} b + 4 a b^{2} + b^{3}\right)\right)}{12 L^{3}}\)
\(V_A = \dfrac{b w \left(2 L^{3} - 6 L a^{2} - 6 L a b - 2 L b^{2} + 4 a^{3} + 6 a^{2} b + 4 a b^{2} + b^{3}\right)}{2 L^{3}}\)
\(V_B = \dfrac{w \left(2 L^{3} \left(a + b - x\right) - 2 L b \left(3 a^{2} + 3 a b + b^{2}\right) + b \left(4 a^{3} + 6 a^{2} b + 4 a b^{2} + b^{3}\right)\right)}{2 L^{3}}\)
\(V_C = \dfrac{b w \left(- 2 L \left(3 a^{2} + 3 a b + b^{2}\right) + 4 a^{3} + 6 a^{2} b + 4 a b^{2} + b^{3}\right)}{2 L^{3}}\)
\(R_1 = \dfrac{b w \left(2 L^{3} - 6 L a^{2} - 6 L a b - 2 L b^{2} + 4 a^{3} + 6 a^{2} b + 4 a b^{2} + b^{3}\right)}{2 L^{3}}\)
\(M_1 = \dfrac{b w \left(12 L^{2} a + 6 L^{2} b - 24 L a^{2} - 24 L a b - 8 L b^{2} + 12 a^{3} + 18 a^{2} b + 12 a b^{2} + 3 b^{3}\right)}{12 L^{2}}\)
\(R_2 = \dfrac{b w \left(6 L a^{2} + 6 L a b + 2 L b^{2} - 4 a^{3} - 6 a^{2} b - 4 a b^{2} - b^{3}\right)}{2 L^{3}}\)
\(M_2 = \dfrac{b w \left(- 12 L a^{2} - 12 L a b - 4 L b^{2} + 12 a^{3} + 18 a^{2} b + 12 a b^{2} + 3 b^{3}\right)}{12 L^{2}}\)
deltaA = b*w*x**2*(-12*L**3*a - 6*L**3*b + 4*L**3*x + 24*L**2*a**2 + 24*L**2*a*b + 8*L**2*b**2 - 12*L*a**3 - 18*L*a**2*b - 12*L*a**2*x - 12*L*a*b**2 - 12*L*a*b*x - 3*L*b**3 - 4*L*b**2*x + 8*a**3*x + 12*a**2*b*x + 8*a*b**2*x + 2*b**3*x)/(24*E*I*L**3)
deltaB = w*(L**3*(-a**4 + 4*a**3*x - 6*a**2*x**2 - 12*a*b*x**2 + 4*a*x**3 - 6*b**2*x**2 + 4*b*x**3 - x**4) + 8*L**2*b*x**2*(3*a**2 + 3*a*b + b**2) - L*b*x**2*(12*a**3 + 18*a**2*b + 12*a**2*x + 12*a*b**2 + 12*a*b*x + 3*b**3 + 4*b**2*x) + 2*b*x**3*(4*a**3 + 6*a**2*b + 4*a*b**2 + b**3))/(24*E*I*L**3)
deltaC = b*w*(L**3*(4*a**3 + 6*a**2*b - 12*a**2*x + 4*a*b**2 - 12*a*b*x + b**3 - 4*b**2*x) + 8*L**2*x**2*(3*a**2 + 3*a*b + b**2) - L*x**2*(12*a**3 + 18*a**2*b + 12*a**2*x + 12*a*b**2 + 12*a*b*x + 3*b**3 + 4*b**2*x) + 2*x**3*(4*a**3 + 6*a**2*b + 4*a*b**2 + b**3))/(24*E*I*L**3)
MA = b*w*(-12*L**3*a - 6*L**3*b + 12*L**3*x + 24*L**2*a**2 + 24*L**2*a*b + 8*L**2*b**2 - 12*L*a**3 - 18*L*a**2*b - 36*L*a**2*x - 12*L*a*b**2 - 36*L*a*b*x - 3*L*b**3 - 12*L*b**2*x + 24*a**3*x + 36*a**2*b*x + 24*a*b**2*x + 6*b**3*x)/(12*L**3)
MB = w*(6*L**3*(-a**2 - 2*a*b + 2*a*x - b**2 + 2*b*x - x**2) + 8*L**2*b*(3*a**2 + 3*a*b + b**2) - 3*L*b*(4*a**3 + 6*a**2*b + 12*a**2*x + 4*a*b**2 + 12*a*b*x + b**3 + 4*b**2*x) + 6*b*x*(4*a**3 + 6*a**2*b + 4*a*b**2 + b**3))/(12*L**3)
MC = b*w*(8*L**2*(3*a**2 + 3*a*b + b**2) - 3*L*(4*a**3 + 6*a**2*b + 12*a**2*x + 4*a*b**2 + 12*a*b*x + b**3 + 4*b**2*x) + 6*x*(4*a**3 + 6*a**2*b + 4*a*b**2 + b**3))/(12*L**3)
VA = b*w*(2*L**3 - 6*L*a**2 - 6*L*a*b - 2*L*b**2 + 4*a**3 + 6*a**2*b + 4*a*b**2 + b**3)/(2*L**3)
VB = w*(2*L**3*(a + b - x) - 2*L*b*(3*a**2 + 3*a*b + b**2) + b*(4*a**3 + 6*a**2*b + 4*a*b**2 + b**3))/(2*L**3)
VC = b*w*(-2*L*(3*a**2 + 3*a*b + b**2) + 4*a**3 + 6*a**2*b + 4*a*b**2 + b**3)/(2*L**3)
R1 = b*w*(2*L**3 - 6*L*a**2 - 6*L*a*b - 2*L*b**2 + 4*a**3 + 6*a**2*b + 4*a*b**2 + b**3)/(2*L**3)
M1 = b*w*(12*L**2*a + 6*L**2*b - 24*L*a**2 - 24*L*a*b - 8*L*b**2 + 12*a**3 + 18*a**2*b + 12*a*b**2 + 3*b**3)/(12*L**2)
R2 = b*w*(6*L*a**2 + 6*L*a*b + 2*L*b**2 - 4*a**3 - 6*a**2*b - 4*a*b**2 - b**3)/(2*L**3)
M2 = b*w*(-12*L*a**2 - 12*L*a*b - 4*L*b**2 + 12*a**3 + 18*a**2*b + 12*a*b**2 + 3*b**3)/(12*L**2)