InícioBE5-peestruturas.ufprVer outras vigas ☰

BE5-pe

Viga biengastada com carga uniforme distribuída na parte esquerda do vão

w Carga distribuída uniforme Apoio engastado R1 M1 Apoio engastado R2 M2 A viga A viga a Cota L Cota A x Identificador B Identificador flechas Flechas da viga momento fletor Momento fletor da viga esforço cortante Esforço cortante da viga

Informações sobre a figura e as equações:

  • As equações são definidas por tramos (tramo A, B...) e válidas somente no tramo indicado no índice (por exemplo, \(M_A\) é a equação do momento fletor somente para o tramo A);
  • Os valores de \(x\) começam em zero no início da viga à esquerda e vão até o valor do comprimento total da viga, no final da viga à direita, portanto, para usar uma equação de um segundo tramo, pode exemplo tramo B, deve-se calcular os valores de \(x\) para esse tramo (por exemplo, se o tramo anterior ao B é o primeiro tramo da viga e tem comprimento de 2,5 metros, o valor de x inicial do tramo B para ser utilizado nas equações é 2,5 metros. No primeiro tramo, \(x\) começa em zero);
  • Os gráficos de flechas, momentos e cortes estão com valores de escala constante e apenas representam o traçado do diagrama;
  • As reações de apoio indicadas na figura estão sempre no sentido positivo da reação. Caso alguma reação tenha o sentido negativo será definido pelo sinal da equação;

Legenda:

  • \(E\) - módulo de elasticidade do material da viga;
  • \(I\) - inércia da seção transversal da viga (em torno no eixo que sai da tela);
  • \(L\) - comprimento total da viga;
  • \(a\) - comprimento do tramo A;
  • \(w\) - carga distribuída uniforme;
  • \(x\) - posição em uma parte qualquer de um tramo da viga;

Equações

Flechas

\(\delta_A = \dfrac{w x^{2} \left(- 6 L^{3} a^{2} + 4 L^{3} a x - L^{3} x^{2} + 8 L^{2} a^{3} - 3 L a^{4} - 4 L a^{3} x + 2 a^{4} x\right)}{24 E I L^{3}}\)

\(\delta_B = \dfrac{a^{3} w \left(L^{3} \left(a - 4 x\right) + 8 L^{2} x^{2} - L x^{2} \left(3 a + 4 x\right) + 2 a x^{3}\right)}{24 E I L^{3}}\)

Momentos fletores

\(M_A = - \dfrac{a^{2} w}{2} + a w x - \dfrac{w x^{2}}{2} + \dfrac{2 a^{3} w}{3 L} - \dfrac{a^{4} w}{4 L^{2}} - \dfrac{a^{3} w x}{L^{2}} + \dfrac{a^{4} w x}{2 L^{3}}\)

\(M_B = \dfrac{a^{3} w \left(8 L^{2} - 3 L \left(a + 4 x\right) + 6 a x\right)}{12 L^{3}}\)

Esforços cortantes

\(V_A = a w - w x - \dfrac{a^{3} w}{L^{2}} + \dfrac{a^{4} w}{2 L^{3}}\)

\(V_B = \dfrac{a^{3} w \left(- 2 L + a\right)}{2 L^{3}}\)

Reações de apoio

\(R_1 = a w - \dfrac{a^{3} w}{L^{2}} + \dfrac{a^{4} w}{2 L^{3}}\)

\(M_1 = \dfrac{a^{2} w \left(6 L^{2} - 8 L a + 3 a^{2}\right)}{12 L^{2}}\)

\(R_2 = \dfrac{a^{3} w \left(2 L - a\right)}{2 L^{3}}\)

\(M_2 = \dfrac{a^{3} w \left(- 4 L + 3 a\right)}{12 L^{2}}\)

Equações em python

Flechas

deltaA = w*x**2*(-6*L**3*a**2 + 4*L**3*a*x - L**3*x**2 + 8*L**2*a**3 - 3*L*a**4 - 4*L*a**3*x + 2*a**4*x)/(24*E*I*L**3)
deltaB = a**3*w*(L**3*(a - 4*x) + 8*L**2*x**2 - L*x**2*(3*a + 4*x) + 2*a*x**3)/(24*E*I*L**3)

Momentos fletores

MA = -a**2*w/2 + a*w*x - w*x**2/2 + 2*a**3*w/(3*L) - a**4*w/(4*L**2) - a**3*w*x/L**2 + a**4*w*x/(2*L**3)
MB = a**3*w*(8*L**2 - 3*L*(a + 4*x) + 6*a*x)/(12*L**3)

Esforços cortantes

VA = a*w - w*x - a**3*w/L**2 + a**4*w/(2*L**3)
VB = a**3*w*(-2*L + a)/(2*L**3)

Reações de apoio

R1 = a*w - a**3*w/L**2 + a**4*w/(2*L**3)
M1 = a**2*w*(6*L**2 - 8*L*a + 3*a**2)/(12*L**2)
R2 = a**3*w*(2*L - a)/(2*L**3)
M2 = a**3*w*(-4*L + 3*a)/(12*L**2)