Viga biapoiada com duas cargas concentradas no vão assimétricas
Informações sobre a figura e as equações:
Legenda:
\(\delta_A = \dfrac{F x \left(- 2 L^{2} a - L^{2} b + 3 L a^{2} + L x^{2} - a^{3} - a x^{2} + b^{3} + b x^{2}\right)}{6 E I L}\)
\(\delta_B = \dfrac{F \left(L \left(- 2 L a x - L b x + a^{3} + 3 a x^{2}\right) + x \left(- a^{3} - a x^{2} + b^{3} + b x^{2}\right)\right)}{6 E I L}\)
\(\delta_C = \dfrac{F \left(L \left(L^{3} - 3 L^{2} b - 3 L^{2} x - 2 L a x + 3 L b^{2} + 5 L b x + 3 L x^{2} + a^{3} + 3 a x^{2} - b^{3} - 3 b^{2} x - 3 b x^{2} - x^{3}\right) + x \left(- a^{3} - a x^{2} + b^{3} + b x^{2}\right)\right)}{6 E I L}\)
\(M_A = \dfrac{F x \left(L - a + b\right)}{L}\)
\(M_B = \dfrac{F \left(L a - a x + b x\right)}{L}\)
\(M_C = \dfrac{F \left(L \left(L + a - b - x\right) - a x + b x\right)}{L}\)
\(V_A = \dfrac{F \left(L - a + b\right)}{L}\)
\(V_B = \dfrac{F \left(- a + b\right)}{L}\)
\(V_C = \dfrac{F \left(- L - a + b\right)}{L}\)
\(R_1 = \dfrac{F \left(L - a + b\right)}{L}\)
\(R_2 = \dfrac{F \left(L + a - b\right)}{L}\)
deltaA = F*x*(-2*L**2*a - L**2*b + 3*L*a**2 + L*x**2 - a**3 - a*x**2 + b**3 + b*x**2)/(6*E*I*L)
deltaB = F*(L*(-2*L*a*x - L*b*x + a**3 + 3*a*x**2) + x*(-a**3 - a*x**2 + b**3 + b*x**2))/(6*E*I*L)
deltaC = F*(L*(L**3 - 3*L**2*b - 3*L**2*x - 2*L*a*x + 3*L*b**2 + 5*L*b*x + 3*L*x**2 + a**3 + 3*a*x**2 - b**3 - 3*b**2*x - 3*b*x**2 - x**3) + x*(-a**3 - a*x**2 + b**3 + b*x**2))/(6*E*I*L)
MA = F*x*(L - a + b)/L
MB = F*(L*a - a*x + b*x)/L
MC = F*(L*(L + a - b - x) - a*x + b*x)/L
VA = F*(L - a + b)/L
VB = F*(-a + b)/L
VC = F*(-L - a + b)/L
R1 = F*(L - a + b)/L
R2 = F*(L + a - b)/L