Viga biapoiada com carga uniforme distribuída nos extremos do vão
Informações sobre a figura e as equações:
Legenda:
\(\delta_A = \dfrac{w x \left(- 4 L^{2} a^{2} - 2 L^{2} b^{2} + 4 L a^{3} + 4 L a x^{2} - L x^{3} - a^{4} - 2 a^{2} x^{2} + b^{4} + 2 b^{2} x^{2}\right)}{24 E I L}\)
\(\delta_B = \dfrac{w \left(L \left(- 4 L a^{2} x - 2 L b^{2} x + a^{4} + 6 a^{2} x^{2}\right) + x \left(- a^{4} - 2 a^{2} x^{2} + b^{4} + 2 b^{2} x^{2}\right)\right)}{24 E I L}\)
\(\delta_C = \dfrac{w \left(L \left(- L^{4} + 4 L^{3} b + 4 L^{3} x - 6 L^{2} b^{2} - 12 L^{2} b x - 6 L^{2} x^{2} - 4 L a^{2} x + 4 L b^{3} + 10 L b^{2} x + 12 L b x^{2} + 4 L x^{3} + a^{4} + 6 a^{2} x^{2} - b^{4} - 4 b^{3} x - 6 b^{2} x^{2} - 4 b x^{3} - x^{4}\right) + x \left(- a^{4} - 2 a^{2} x^{2} + b^{4} + 2 b^{2} x^{2}\right)\right)}{24 E I L}\)
\(M_A = \dfrac{w x \left(2 L a - L x - a^{2} + b^{2}\right)}{2 L}\)
\(M_B = \dfrac{w \left(L a^{2} - a^{2} x + b^{2} x\right)}{2 L}\)
\(M_C = \dfrac{w \left(L \left(- L^{2} + 2 L b + 2 L x + a^{2} - b^{2} - 2 b x - x^{2}\right) - a^{2} x + b^{2} x\right)}{2 L}\)
\(V_A = \dfrac{w \left(2 L a - 2 L x - a^{2} + b^{2}\right)}{2 L}\)
\(V_B = \dfrac{w \left(- a^{2} + b^{2}\right)}{2 L}\)
\(V_C = \dfrac{w \left(2 L \left(L - b - x\right) - a^{2} + b^{2}\right)}{2 L}\)
\(R_1 = \dfrac{w \left(2 L a - a^{2} + b^{2}\right)}{2 L}\)
\(R_2 = \dfrac{w \left(2 L b + a^{2} - b^{2}\right)}{2 L}\)
deltaA = w*x*(-4*L**2*a**2 - 2*L**2*b**2 + 4*L*a**3 + 4*L*a*x**2 - L*x**3 - a**4 - 2*a**2*x**2 + b**4 + 2*b**2*x**2)/(24*E*I*L)
deltaB = w*(L*(-4*L*a**2*x - 2*L*b**2*x + a**4 + 6*a**2*x**2) + x*(-a**4 - 2*a**2*x**2 + b**4 + 2*b**2*x**2))/(24*E*I*L)
deltaC = w*(L*(-L**4 + 4*L**3*b + 4*L**3*x - 6*L**2*b**2 - 12*L**2*b*x - 6*L**2*x**2 - 4*L*a**2*x + 4*L*b**3 + 10*L*b**2*x + 12*L*b*x**2 + 4*L*x**3 + a**4 + 6*a**2*x**2 - b**4 - 4*b**3*x - 6*b**2*x**2 - 4*b*x**3 - x**4) + x*(-a**4 - 2*a**2*x**2 + b**4 + 2*b**2*x**2))/(24*E*I*L)
MA = w*x*(2*L*a - L*x - a**2 + b**2)/(2*L)
MB = w*(L*a**2 - a**2*x + b**2*x)/(2*L)
MC = w*(L*(-L**2 + 2*L*b + 2*L*x + a**2 - b**2 - 2*b*x - x**2) - a**2*x + b**2*x)/(2*L)
VA = w*(2*L*a - 2*L*x - a**2 + b**2)/(2*L)
VB = w*(-a**2 + b**2)/(2*L)
VC = w*(2*L*(L - b - x) - a**2 + b**2)/(2*L)
R1 = w*(2*L*a - a**2 + b**2)/(2*L)
R2 = w*(2*L*b + a**2 - b**2)/(2*L)