InícioAE9-ffestruturas.ufprVer outras vigas ☰

AE9-ff

Viga apoio-engaste com duas cargas concentradas no vão assimétricas

F Carga concentrada F Carga concentrada Apoio simples R1 Apoio engastado R2 M2 A viga A viga A viga a Cota b Cota L Cota A x Identificador B Identificador C Identificador flechas Flechas da viga momento fletor Momento fletor da viga esforço cortante Esforço cortante da viga

Informações sobre a figura e as equações:

  • As equações são definidas por tramos (tramo A, B...) e válidas somente no tramo indicado no índice (por exemplo, \(M_A\) é a equação do momento fletor somente para o tramo A);
  • Os valores de \(x\) começam em zero no início da viga à esquerda e vão até o valor do comprimento total da viga, no final da viga à direita, portanto, para usar uma equação de um segundo tramo, pode exemplo tramo B, deve-se calcular os valores de \(x\) para esse tramo (por exemplo, se o tramo anterior ao B é o primeiro tramo da viga e tem comprimento de 2,5 metros, o valor de x inicial do tramo B para ser utilizado nas equações é 2,5 metros. No primeiro tramo, \(x\) começa em zero);
  • Os gráficos de flechas, momentos e cortes estão com valores de escala constante e apenas representam o traçado do diagrama;
  • As reações de apoio indicadas na figura estão sempre no sentido positivo da reação. Caso alguma reação tenha o sentido negativo será definido pelo sinal da equação;

Legenda:

  • \(E\) - módulo de elasticidade do material da viga;
  • \(F\) - carga concentrada;
  • \(I\) - inércia da seção transversal da viga (em torno no eixo que sai da tela);
  • \(L\) - comprimento total da viga;
  • \(a\) - comprimento do tramo A;
  • \(b\) - comprimento do tramo B;
  • \(x\) - posição em uma parte qualquer de um tramo da viga;

Equações

Flechas

\(\delta_A = \dfrac{F x \left(- 3 L^{4} a + 6 L^{3} a^{2} - 3 L^{3} b^{2} + 2 L^{3} x^{2} - 3 L^{2} a^{3} - 3 L^{2} a x^{2} + 3 L^{2} b^{3} + 3 L b^{2} x^{2} + a^{3} x^{2} - b^{3} x^{2}\right)}{12 E I L^{3}}\)

\(\delta_B = \dfrac{F \left(L^{3} \left(- 3 L a x + 2 a^{3} + 6 a x^{2} - 3 b^{2} x\right) + 3 L^{2} x \left(- a^{3} - a x^{2} + b^{3}\right) + 3 L b^{2} x^{3} + x^{3} \left(a^{3} - b^{3}\right)\right)}{12 E I L^{3}}\)

\(\delta_C = \dfrac{F \left(L^{3} \left(2 L^{3} - 6 L^{2} b - 6 L^{2} x - 3 L a x + 6 L b^{2} + 12 L b x + 6 L x^{2} + 2 a^{3} + 6 a x^{2} - 2 b^{3} - 9 b^{2} x - 6 b x^{2} - 2 x^{3}\right) + 3 L^{2} x \left(- a^{3} - a x^{2} + b^{3}\right) + 3 L b^{2} x^{3} + x^{3} \left(a^{3} - b^{3}\right)\right)}{12 E I L^{3}}\)

Momentos fletores

\(M_A = \dfrac{F x \left(2 L^{3} - 3 L^{2} a + 3 L b^{2} + a^{3} - b^{3}\right)}{2 L^{3}}\)

\(M_B = \dfrac{F \left(2 L^{3} a - 3 L^{2} a x + 3 L b^{2} x + x \left(a^{3} - b^{3}\right)\right)}{2 L^{3}}\)

\(M_C = \dfrac{F \left(2 L^{3} \left(L + a - b - x\right) - 3 L^{2} a x + 3 L b^{2} x + x \left(a^{3} - b^{3}\right)\right)}{2 L^{3}}\)

Esforços cortantes

\(V_A = \dfrac{F \left(2 L^{3} - 3 L^{2} a + 3 L b^{2} + a^{3} - b^{3}\right)}{2 L^{3}}\)

\(V_B = \dfrac{F \left(- 3 L^{2} a + 3 L b^{2} + a^{3} - b^{3}\right)}{2 L^{3}}\)

\(V_C = \dfrac{F \left(- 2 L^{3} - 3 L^{2} a + 3 L b^{2} + a^{3} - b^{3}\right)}{2 L^{3}}\)

Reações de apoio

\(R_1 = \dfrac{F \left(2 L^{3} - 3 L^{2} a + 3 L b^{2} + a^{3} - b^{3}\right)}{2 L^{3}}\)

\(R_2 = \dfrac{F \left(2 L^{3} + 3 L^{2} a - 3 L b^{2} - a^{3} + b^{3}\right)}{2 L^{3}}\)

\(M_2 = \dfrac{F \left(- L^{2} a - 2 L^{2} b + 3 L b^{2} + a^{3} - b^{3}\right)}{2 L^{2}}\)

Equações em python

Flechas

deltaA = F*x*(-3*L**4*a + 6*L**3*a**2 - 3*L**3*b**2 + 2*L**3*x**2 - 3*L**2*a**3 - 3*L**2*a*x**2 + 3*L**2*b**3 + 3*L*b**2*x**2 + a**3*x**2 - b**3*x**2)/(12*E*I*L**3)
deltaB = F*(L**3*(-3*L*a*x + 2*a**3 + 6*a*x**2 - 3*b**2*x) + 3*L**2*x*(-a**3 - a*x**2 + b**3) + 3*L*b**2*x**3 + x**3*(a**3 - b**3))/(12*E*I*L**3)
deltaC = F*(L**3*(2*L**3 - 6*L**2*b - 6*L**2*x - 3*L*a*x + 6*L*b**2 + 12*L*b*x + 6*L*x**2 + 2*a**3 + 6*a*x**2 - 2*b**3 - 9*b**2*x - 6*b*x**2 - 2*x**3) + 3*L**2*x*(-a**3 - a*x**2 + b**3) + 3*L*b**2*x**3 + x**3*(a**3 - b**3))/(12*E*I*L**3)

Momentos fletores

MA = F*x*(2*L**3 - 3*L**2*a + 3*L*b**2 + a**3 - b**3)/(2*L**3)
MB = F*(2*L**3*a - 3*L**2*a*x + 3*L*b**2*x + x*(a**3 - b**3))/(2*L**3)
MC = F*(2*L**3*(L + a - b - x) - 3*L**2*a*x + 3*L*b**2*x + x*(a**3 - b**3))/(2*L**3)

Esforços cortantes

VA = F*(2*L**3 - 3*L**2*a + 3*L*b**2 + a**3 - b**3)/(2*L**3)
VB = F*(-3*L**2*a + 3*L*b**2 + a**3 - b**3)/(2*L**3)
VC = F*(-2*L**3 - 3*L**2*a + 3*L*b**2 + a**3 - b**3)/(2*L**3)

Reações de apoio

R1 = F*(2*L**3 - 3*L**2*a + 3*L*b**2 + a**3 - b**3)/(2*L**3)
R2 = F*(2*L**3 + 3*L**2*a - 3*L*b**2 - a**3 + b**3)/(2*L**3)
M2 = F*(-L**2*a - 2*L**2*b + 3*L*b**2 + a**3 - b**3)/(2*L**2)